HealthFlex
×
  • About
  • PARKINSON HOLTER STAT-ON
  • Fall Detection
  • SUPPORT
    • DOWNLOADS
    • Publications
    • Contact
  • Shop
  • cart
  •  EN
    •  ES

Computers in Biology and Medicine – May 2017

Publications

Estimating bradykinesia severity in Parkinson’s disease by analysing gait through a waist-worn sensor

A. Samà, C. Pérez-López, D. Rodríguez-Martín, A. Català, J.M. Moreno-Aróstegui, J. Cabestany, E. de Mingo, A. Rodríguez-Molinero, “Estimating bradykinesia severity in Parkinson’s disease by analysing gait through a waist-worn sensor”, Computers in Biology and Medicine, Vol 84, pp. 114-123, May 2017, DOI: 10.1016/j.compbiomed.2017.03.020

Abstract

Bradykinesia is a cardinal symptom of Parkinson’s disease (PD) and describes the slowness of movement revealed in patients. Current PD therapies are based on dopamine replacement, and given that bradykinesia is the symptom that best correlates with the dopaminergic deficiency, the knowledge of its fluctuations may be useful in the diagnosis, treatment and better understanding of the disease progression. This paper evaluates a machine learning method that analyses the signals provided by a triaxial accelerometer placed on the waist of PD patients in order to automatically assess bradykinetic gait unobtrusively. This method employs Support Vector Machines to determine those parts of the signals corresponding to gait. The frequency content of strides is then used to determine bradykinetic walking bouts and to estimate bradykinesia severity based on an epsilon-Support Vector Regression model. The method is validated in 12 PD patients, which leads to two main conclusions. Firstly, the frequency content of the strides allows for the dichotomic detection of bradykinesia with an accuracy higher than 90%. This process requires the use of a patient-dependant threshold that is estimated based on a leave-one-patient-out regression model. Secondly, bradykinesia severity measured through UPDRS scores is approximated by means of a regression model with errors below 10%. Although the method has to be further validated in more patients, results obtained suggest that the presented approach can be successfully used to rate bradykinesia in the daily life of PD patients unobtrusively.

logo

Please, contact us for any questions or personalized advice. Looking forward to hearing from you!

Puedes ponerte en contacto con nosotros para cualquier consulta o asesoramiento personalizado. Esperamos tus comentarios!

(+34) 934 923 959

info@sense4care.com

C/ Tirso de Molina 36, 08940 Cornellà de Llobregat

  • Legal notice
  • Terms and Conditions

News – Notícias

  • Results published in the MDS bring evidence to STAT-ON
  • STAT-ON Distribution Agreement for South America
  • The MedTech Company Sense4Care Receives CE Mark Certificate for Its Medical Device STAT-ON ™ The Holter for Parkinson
  • Amazing and productive days at the #mwc2019!
  • Mobile World Congress 2019 is around the corner
  • Medica 2018 - Sense4Care presents its wearable medical device in Düsseldorf

Search / Buscar

Menu

  • About
  • PARKINSON HOLTER STAT-ON
  • Fall Detection
  • SUPPORT
    • DOWNLOADS
    • Publications
    • Contact
  • Shop
  • cart
  • EN
    • ES
Copyright © all rights reserved
Designed by carmengalan.com
This website uses cookies to improve your experience. We'll assume you're ok with this, but you can opt-out if you wish.Accept Read More
Privacy & Cookies Policy